
Agile Methodologies - 1

Agile Methodologies

Venkat Subramaniam

venkats@agiledeveloper.com

http://www.agiledeveloper.com/download.aspx

Agile Methodologies - 2

Abstract
Abstract Agile development is picking up steam. You have most likely heard about

eXtreme Programming(XP). What other Agile methodologies are you familiar with
and what do they bring of interest or significant to the table of Agility? More
important, why should you learn about these different methodologies instead of
simply focusing on one? There is no one shoe that fits all. Any methodology that
requires you to follow it in totality and not let you adapt is rather dogmatic, not
pragmatic. To be effective we have to take the best of different approaches and
apply to our projects base on our specific needs.

In this session, we will look at different methodologies that promote agility. We then
will compare and contrast the features of each. You can take away from the
presentation what makes the most sense for your project and team.

About the Speaker Dr. Venkat Subramaniam, founder of
Agile Developer, Inc., has trained and mentored
thousands of software developers in the US, Canada,
and Europe. He has significant experience in
architecture, design, and development of software
applications. Venkat helps his clients effectively apply
and succeed with agile practices on their software
projects, and speaks frequently at conferences.
He is also an adjunct faculty at the University of
Houston (where he received the 2004 CS department
teaching excellence award) and teaches the
professional software developer series at Rice
University School of continuing studies.
Venkat has been a frequent speaker at No Fluff Just
Stuff Software Symposium since Summer 2002.

Agile Methodologies - 3

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 4

Agility
• What’s Agility?
• Being agile
• What’s Agile?
• “marked by ready ability to move with quick

easy grace”
• “having a quick resourceful and adaptable

character”
• What does that mean?

– Process has to be lightweight and sufficient
– Lightweight helps us adapt and move
– Sufficient recognizes our ineffectiveness to be

complete and relies on strong communication

Agile Methodologies - 5

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 6

Evolution of Fields
• Bridge Construction

• Medicine

• Airplanes

• Software Development

Agile Methodologies - 7

Bridge Construction
• Early Wood, Stone
• Then Iron, Steel
• Concrete Bridges
• Constructing a bridge is different from

innovating a bridge (with new material
for instance) for the first time

• Engineers use well established metrics to
design bridges – they do not innovate at
this stage

Agile Methodologies - 8

Medicine
• “Health was thought to be restored

by purging, starving, vomiting or
bloodletting”
– Both surgeons and barbers were

specializing in this bloody practice
– Widely practiced in 18th and 19th

century
– Declared quackery by 1900

• Infection control
– If patient survived surgery,

he most likely died out of infection
– Germ theory and sterility came only

in late 1800s (Lister)
– Current rate of infection < 2.5%

Agile Methodologies - 9

Airplanes
• 400 BC Chinese fly kite

aspiring humans to fly
• For centuries, we tried to fly

like birds… disastrous
• Steam powered, hot air
• Gliders, single man
• Engine powered
• 1903 Wright brothers’ first

flight – 12 seconds, 120 feet,
10 feet altitude

Agile Methodologies - 10

Software Development
• Relatively nascent field in comparison

• Machines are getting faster or more
powerful

• Are we getting better in delivering
software applications though

Agile Methodologies - 11

Success (or lack there of)
• How successful are we in developing

software?

• Less than 10% of software projects
succeed1

• Criteria for success?: On time, within
budget, feature complete, works (failure
free)

• Why is it so hard to get this right?

Agile Methodologies - 12

Software Engineering?
• What’s Engineering?2, 3

– “the application of science and mathematics by which the
properties of matter and the sources of energy in nature are
made useful to people”

– “the design and manufacture of complex products <software
engineering>”

• If software engineering like manufacturing or designing
a manufacturing plant?
– Is it like making another cell phone or making of cell phones

(took 37 years for commercialization)?

• Manufacturing is predictive
– You can measure and control quality, quantity

• Designing a manufacturing plant is creative/innovative
• Most software development is innovative process rather

than predictive manufacturing
– Requires great deal of innovation, interaction/communication

Agile Methodologies - 13

Why is it hard to communicate?
• Why not simply write good documents to

describe requirements and hand them off
to developers to create software?

• We have tried that, but we know it does
not work

• 3 factors influence
–What you are communicating
–Who is communicating
–With whom

Agile Methodologies - 14

• A Picture is worth a thousand words

• Let’s take a look at this picture from Stephen
Covey’s “7 Habits of Highly Effective People”

Agile Methodologies - 15

Realizing what makes it hard
• Ceremony: Amount of method weight for

documentation, formal steps, review, …
• Documents can’t fully describe the

requirements
• 3 types of people make up your team

– Those with exceptional domain knowledge but little
software development expertise

– Those with exceptional software dev. experience, but
little domain knowledge

– Those with both domain and software development
skills

– (we will ignore that 4th category)
• Closer and frequent interaction is a necessity

Agile Methodologies - 16

Process
• Waterfall approach4

–Actually specified iteration - largely ignored

• Customers’ mind is not frozen after they
give us the requirements

• We are not able to fully understand what
is said

• Show me a long project duration, I will
show you a project that is already
doomed

Agile Methodologies - 17

Iterative and Incremental
• How to foster

innovation and
communication?

• Isolation does not
help

• Interaction is key
–among developers

and with
customers

• But will that not
take more time?

Agile Methodologies - 18

The time/scheduling hypocrisy
• What can you tell me about the next

project, you ask?
– It is due on November 1st tells your manager

• We hold deadlines too dearly
• Of course, time to market is critical

• But what generally happens on projects
when you hit that deadline?

Agile Methodologies - 19

Pick Two
• Ask your customers to pick two out of the

following, you decide the third:

• Time
• Scope
• Quality

• Reality often ignored in project planning

Agile Methodologies - 20

Agile Development Process
• Iterative and evolutionary development
• Timeboxing

–Set amount of time for iteration
–Adapt future iteration based on the realities

• Adaptive planning
• Incremental delivery
• Agility
• More focused on success than sticking

with a plan
• Working software is valued and

considered measure of progress

Agile Methodologies - 21

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 22

Agile Manifesto

http://agilemanifesto.org

Agile Methodologies - 23

Principles behind the Agile Manifesto
• Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
• Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.
• Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.
• Business people and developers must work together daily throughout the

project.
• Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.
• The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.
• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity–the art of maximizing the amount of work not done–is
essential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Agile Methodologies - 24

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 25

Methodology
• Methodology

• It’s what you do–whatever that is–to
create software

• Series of related methods to coordinate
people’s activities on a team

• How work is done

Agile Methodologies - 26

Why Methodology?
• Helps to explain how your team works

• Helps us understand responsibilities and
priorities

• Helps measure progress and show
progress

• Serves as a framework to learn from

Agile Methodologies - 27

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 28

Methodologies
Methodologies share common principles,
but differ in practices
• eXtreme Programming (XP)
• Scrum
• Evolutionary Project Management (Evo)
• Unified Process (UP)
• Crystal
• Lean Development (LD)
• Adaptive Software Development (ASD)
• Dynamic System Development Method (DSDM)
• Feature Driven Development (FDD)

Agile Methodologies - 29

eXtreme Programming (XP)

http://www.extremeprogramming.org

http://www.xprogramming.com

Agile Methodologies - 30

XP
• Kent Beck, Ward Cunningham, Ron Jeffries based on

experience from C3 project
• XP has nothing new, yet it has something new!
• Four values, Twelve practices

– Based on what has worked on projects, taking them to extreme
• If something is good why not do it all the time?

• Small teams (under 20)
• Onsite customer presence
• Planning game

– Negotiate requirements in form of stories captured on index
cards

• 2 to 3 weeks iteration
• Scales well for problem size within limits, but does not

scale well for team size
– But, a competent smaller team is better than a large team following

heavier methodologies

• Deemphasizes documentation
– Accelerates development, but may be a problem for transition later on

Agile Methodologies - 31

Control Variables
• Cost

– Too little, does not solve problems
– Too much, some times more of a problem

• Time
– More time can improve quality and increase scope.
– Too much time hurts as well

• Feedback from system in production is imperative

• Quality
– Sacrificing this may result in short term gains
– Over the long haul, lost is enormous

• Scope
– Lesser the scope, better the quality
– You can deliver sooner as well
– Assuming it meets the business needs

Agile Methodologies - 32

Set of Values
• Communication

– Communicate critical change in requirements, design, etc.
– Put in place practices that will enhance communication

• Simplicity
– Find simplest thing that will work
– Build some thing simple today and pay a little to change

tomorrow than build some thing complicated today that may
never be used

• Feedback
– Unit tests provide feedback
– Corrected in minutes and days, not weeks
– System that stays out of the hands of users is trouble waiting

to happen

• Courage
– Don’t hesitate to throw code away if you find better simpler way
– Do not hesitate to call attention to problems if they are

significant and will benefit from reworking

Agile Methodologies - 33

Taking it to extreme
• It takes good commonsense principles and practices to

extreme levels
– If code review is good, we’ll review code all the time

• Pair programming
– If testing is good, every body will test all the time

• Unit testing by developers, functional testing by customers
– If design is good, we’ll make it part of everybody’s daily

business
• Refactoring

– If simplicity is good, we’ll make it part of the system with
simplest design that supports its current functionality

– If architecture is important, everybody will work defining and
refining the architecture all the time

• metaphor
– If integration testing is important, then we’ll integrate and test

several times a day
• Continuous integration

– If short iterations are good, we’ll make the iterations really,
really short – seconds and minutes and minutes and hours, not
weeks and months and years

• The planning game

Agile Methodologies - 34

XP Principles
• The Planning Game

– Scope next release with business priorities, technical
estimates

– Update the plan based on reality
• Small Releases

– Put simply system into production quickly
– Release new version in short cycle

• Metaphor
– Guide development with simple shared story of how

the whole system works
• Simple Design

– Design as simple as possible at any given moment.
• Testing

– Continually write and run unit tests

Agile Methodologies - 35

XP Principles
• Refactoring

– Restructure system without changing its behavior to remove
duplication, improve communication, add flexibility and simplify

• Pair Programming
– Two programmers, one machine, four eyes are better than two

• Collective Ownership
– Anyone can change code anywhere in the system at any time

• Continuous Integration
– Integrate and build the system many times a day, every time a

talk is completed.
• 40-hour Week

– Never work overtime a second week in a row
• On-site Customer

– Real, live user on the team, available full-time to answer
questions

• Coding Standards
– All code written accordance with rules emphasizing

communication through the code

Agile Methodologies - 36

Where does XP work?
• Culture

–Business culture
• How change is accepted? Need to work long

hours? Goal oriented? Heavy on paper work?

• Size
–Team size of around 10 is ideal

• Technology
–Must be able to make change quickly and get

feedback

• Work environment
–Should promote closer interaction and

communication

Agile Methodologies - 37

Scrum

http://en.wikipedia.org/wiki/Image:Rugby_union_scrummage.jpg

http://www.controlchaos.com

Agile Methodologies - 38

Scrum
• Developed by Ken Schwaber and Jeff Sutherland
• Name derived from Rugby

– Groups effort to move quickly to counter the opposite team,
adjusting the move along progress

• Scrum Master – coach for the team
– Looks outward keeping distractions out
– Trusts the self-managed team to get work done

• Sprint – 30 days iteration cycle with pre-sprint and
post-sprint activities

• Scrum meeting – Short standup meeting to
communicate and monitor progress

• Backlog – used for planning
– Features and estimate of duration for each task
– Task for sprint picked from the pool of tasks
– Used to decide features for sprint and plan out the work

• Sprint Goal – minimum success criterion to steer and
keep focus

Agile Methodologies - 39

Scrum…
• Leaves documentation depth to specifics

of projects – may need more or less
–aim for as little as possible

• Self-directed and self-organized team
–Competent focused people

• Demo to stakeholder at iteration end
• Client-driven adaptive planning
• No work added during iteration
• Lends itself to experimenting on certain

parts of the application development

Agile Methodologies - 40

Scrum Lifecycle
• Planning

–Vision, expectations, funding

• Staging
– Identify requirements, prioritize iteration

• Development
– Implement system ready for release in each

sprint

• Release
–Operational deployment

Agile Methodologies - 41

Scrum Values
• Commitment

– Team takes responsibility to complete the Sprint. To
avoid things that will stand in its way

• Focus
– Team’s focus is maintained. Distractions,

interruptions are fielded
• Openness

– Overall and individual status and commitments kept
open.

• Respect
– Team responsibility rather than scapegoating.

• Courage
– Management and team have the courage to take

responsibility to do what is necessary

Agile Methodologies - 42

http://www.gilb.com

http://www.gilb.com

Evolutionary Project
Management (Evo)

Agile Methodologies - 43

Evo
• Oldest iterative and incremental method

– introduced in 1960s by Tom Gilb, published 1976

• Short (5 days) iteration
• Evolutionary requirements and design
• Recommends measurable short list of project

objectives
• Avoids big up-front specification

– Evolving requirements

• Recommends use of a Planguage – a
specification language that could make it
ceremonial

• Emphasizes measurable progress
• Frequent delivery to stakeholders

Agile Methodologies - 44

Unified Process (UP)

http://www-306.ibm.com/software/awdtools/rup

Agile Methodologies - 45

UP
• Developed by Rational Software Corp (now part of

IBM), lead by 3 amigos
– Grady Booch, James Rumbaugh, Ivar Jacobson

• Derived from several methodologies at that time
• Micro and Macro development process
• Micro deals with tactical issues (daily activities)
• Macro process has inception, elaboration, construction,

and transition
• Generally viewed as heavy weight process
• Agile in sprit, but can get very ceremonial

– Emphasizes iterative cycles, constant feedback
– Developed along with UML which provides for several forms of

documentation

• Comes from disciplined process oriented angle
• Not easy to tailor for small projects

Agile Methodologies - 46

Crystal

http://alistair.cockburn.us

http://alistair.cockburn.us

Agile Methodologies - 47

Crystal Family
• Alistair Cockburn
• Framework of related methods addressing variability of

environment and specific characteristics of projects
– Size of development team
– Project criticality

• Loss - due to defect - of comfort, essential money, discretionary
money, life

• Crystal a metaphor for color and hardness
– Clear, yellow, orange, red

• People and Communication centric
• Lighter (color) is better as long as it lasts

– See/show significant consequence or risk before implementing
a harder/darker version

• Project specific methodologies

Agile Methodologies - 48

Core Properties
• Frequent delivery/integration using time-boxed

iterations
• Reflect and improve, criticize and fix
• Osmotic (passive) knowledge acquisition and

communication through office organization and
open channels

• Personal Safety, safe to be honest, confidence
to court criticism

• Stay focused, clear tasks, priorities on work,
limit the workload

• Access to expert users, fast, quality feedback
• The usual agile stuff: automated testing, CM,

continuous integration

Agile Methodologies - 49

Lean Development (LD)

http://www.itabhi.com/ld.htm

http://www.itabhi.com/ld.htm

Agile Methodologies - 50

LD
• Developed by Robert Charette based on lean

manufacturing - proprietary
• Risk entrepreneurship turn risk into opportunity
• Phases:

– Startup
• Planning, business cases, feasibility studies

– steady state
• Series of short spirals

– transition-renewal
• Doc developed and delivered

• More business strategies and project management
approach
– Involves everyone, not just developers
– Focused on accessing and achieving business value

• LD is “strategic, business-down approach whereas most
agile approaches are tactical, program team-oriented in
nature.”

Agile Methodologies - 51

LD Principles

• Satisfying the customer is the highest priority of the
organization

• Always provide the best value for money
• Success depends on active customer participation
• Every lean development is a team effort
• Everything is changeable
• Domain, not point solutions
• Complete, don’t construct
• Minimalism is essential
• Needs determine technology
• Product growth is feature growth, not size growth
• Never push lean development beyond its limits

Agile Methodologies - 52

Adaptive Software Development

http://www.adaptivesd.com

http://www.adaptivesd.com

Agile Methodologies - 53

ASD
• Developed by Jim Highsmith and Sam Bayer

based on rapid application development (RAD)
• Emphasizes continuous adaptation of the

process
• Speculate, Collaborate, and learn cycles
• Continuous learning and adaptation as project

emerges
• Mission focused, feature based, iterative,

timeboxed, risk driven, and change tolerant
• Non prescriptive in nature – not much on how

to do things, more of opportunities to take to
meet the goal

Agile Methodologies - 54

Dynamic Systems Development Method (DSDM)

http://www.dsdm.org

http://www.dsdm.org

Agile Methodologies - 55

DSDM
• Developed by DSDM consortium

– Mostly European
• Five phases: feasibility, business study,

functional model iteration, design and build
iteration, implementation

• Strong emphasis for project management
activities

• 10 project roles (a person may play more than
one role)

• Plans evolve based on increments
• Timeboxing means for planning, monitoring,

controlling
• Prioritized using MoSCow

– Must have, Should have, Could have, Want
• Designed for small teams, but scales up

Agile Methodologies - 56

Feature Driven Development (FDD)

http://www.nebulon.com/fdd

http://www.nebulon.com/fdd

Agile Methodologies - 57

FDD
• Jeff DeLuca and Peter Coad
• Simple process, modeling, short iteration cycle
• Good people for domain knowledge, design,

and development
• Expects requirements to be well captured and

understood
• Expects classes to be assigned to individuals
• Emphases on getting the architecture right
• Suitable for stable systems with predictable

evolution

Agile Methodologies - 58

Quick Comparison

• Ceremony and Iteration

• Competency Level Expectations

• Emphasis

Agile Methodologies - 59

Ceremony and Iteration

Fewer
documents/steps

More
documents/steps

XP

Craig Larman’s: Agile & Iterative Development – A Managers Guide

Scrum

Evo

UP

Agile Methodologies - 60

Competency Level Expectations
• Cockburn Level’s: following (level1), detaching (level2), fluent (level3)
• The Dreyfus Model of Skills Acquisition (level 1 to 5) [Herding racehorses

and racing sheep–Dave Thomas]

Scrum
ASD

Highly
Competent

XPUP

FDD LD

Agile Methodologies - 61

Emphasis

work week
40 hours

firstcationrefactoring,
presenceone of thecommuni-constant
expertiteration,team, openparticipation,
domainshortSelf directedcustomer
high focus,delivery,Backlog,strong
criticality,frequentTimeboxing,ownership,
based ondriven,meeting,Collective
VariesCustomerScrumPair Prog,Feature
VariesHighMed/highFlexibleLowCeremonial
VariesMed/largeSmallSmallTeam Size
Med/HighHighMediumMediumBusiness Process
RecoStrongStrongTDD
StrongRecoStrongStrongStrongCustomer Participation
ShortShort5 days30 days2/3 weeksIteration

CrystalUPEvoScrumXP

Agile Methodologies - 62

Quiz Time

Agile Methodologies - 63

Agile Methodologies

• What’s Agility?
• Why Agility?
• Agile Manifesto and Principles
• What’s Methodology and why?
• Methodologies that promote agility
• Conclusion

Agile Methodologies - 64

References
1. "Software Project Management Practices: Failure Versus Success," Capers Jones
(http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html)
2. "Agile Software Development," Alister Cockburn, Addison-Wesley.
3. "Agile and Iterative Development: A Manager's Guide," Craig Larman, Addison-Wesley.
4. "Iterative and Incremental Development: A Brief History," Craig Larman, IEEE Computer,

June 2003.
5. "Planning Extreme Programming," Kent Beck, Martin Fowler, Addison-Wesley.
6. "Agile Software Development, Principles, Patterns, and Practices," by Robert C. Martin,

Prentice Hall.
7. "Agile Software Development with SCRUM," Ken Schwaber, Mike Beedle, Prentice Hall.
8. "Information Radiator," http://c2.com/cgi-bin/wiki?InformationRadiator.
9. "Test Driven Development: By Example," Kent Beck, Addison-Wesley.
10. "Pragmatic Unit Testing in Java with JUnit," Andy Hunt, Dave Thomas, Pragmatic

Programmers.
11. "Refactoring: Improving the Design of Existing Code," Martin Fowler,

Kent Beck, John Brant, William Opdyke, Don Roberts, Addison-Wesley.
12. "Continuous Integration," Martin Fowler, Matthew Foemmel,

http://www.martinfowler.com/articles/continuousIntegration.html.
13. "Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps," Mike

Clark, Pragmatic Programmers.
14. "Continuous Integration Server Feature Matrix,"

http://docs.codehaus.org/display/DAMAGECONTROL/Continuous+Integration+Server+Fe
ature+Matrix.

15. "The Pragmatic Programmer: From Journeyman to Master," Andrew Hunt, David
Thomas, Addison-Wesley.

16. Some interesting articles to read - http://tinyurl.com/drnor

Agile Methodologies - 65

Download slides and More…

Please fill out your evaluations!

Download examples/slides from
http://www.agiledeveloper.com/download.aspx

