
Dealing with Conflicting Interfaces: Part I - Java
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
Interfaces provide extensibility in an object-oriented system. They allow us to switch
implementations, and help us decouple from our dependencies. When we go though a
system evolution or though an evolutionary design, what happens if we run into two
interfaces with same method signature, but different semantics? In Part I, we will look at
the problems and then the solution in Java. In Part II, we will look at the solution in .NET
for the same problem.

Interfaces
Interfaces represent pure abstractness in object modeling. In C++, we may write them as
pure abstract classes–classes with only pure virtual methods. In Java and .NET, we use
the i nt er f ace keyword to write them–we’re not allowed to place any fields or
implement any methods in these interfaces.

An example of an interface in Java is shown below:

publ i c i nt er f ace Pi ani st
{
 publ i c St r i ng get Name() ;
 publ i c voi d pl ay() ;
}

The Pianist interface has a method to get the name and a method to ask the pianist to
play. You may have different classes to implement it. You may create a Mock object that
implements this interface for testing purpose. You may have a Per son class that
implements this interface. You may have a Robot class implement this, and so on,
depending on your application.

Implementing the Interface
Let’s create a Mock object to implement the Pi ani st interface and see how it works.
Here is a simple example that uses this interface.

publ i c c l ass MockPi ani st i mpl ement s Pi ani st
{
 publ i c St r i ng get Name()
 {
 r et ur n " Mock Pi ani st " ;
 }

 publ i c voi d pl ay()
 {
 Syst em. out . pr i nt l n(" Mock pl ayi ng pi ano") ;
 }
}

publ i c c l ass MyTest Case
{
 publ i c st at i c voi d usePi ani st (Pi ani st p)
 {
 Syst em. out . pr i nt l n(" Usi ng Pi ani st ") ;
 Syst em. out . pr i nt l n(" Name: " + p. get Name()) ;
 p. pl ay() ;
 }

 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 MockPi ani st aMockPi ani st = new MockPi ani st () ;
 usePi ani st (aMockPi ani st) ;
 }
}

The MockPi ani st provides a simple implementation of the Pi ani st interface. The
mai n() method of the MyTest Case class is creating an object of the MockPi ani st and is
using its Pi ani st interface. The output from this example is shown below:

Usi ng Pi ani st
Name: Mock Pi ani st
Mock pl ayi ng pi ano

Another Interface and Mock
Assume as we go along with the evolution of an application, we see a need for another
interface, say, At hl et e. Let’s write the interface and create a Mock and a test code for
that as well as shown below:

publ i c i nt er f ace At hl et e
{
 publ i c St r i ng get Name() ;
 publ i c voi d pl ay() ;
}

publ i c c l ass MockAt hl et e i mpl ement s At hl et e
{
 publ i c St r i ng get Name()
 {
 r et ur n " Mock At hl et e" ;
 }

 publ i c voi d pl ay()
 {
 Syst em. out . pr i nt l n(" Mock At hl et e pl ayi ng") ;
 }
}

publ i c c l ass MyTest Case
{
 publ i c st at i c voi d usePi ani st (Pi ani st p)
 {
 Syst em. out . pr i nt l n(" Usi ng Pi ani st ") ;
 Syst em. out . pr i nt l n(" Name: " + p. get Name()) ;
 p. pl ay() ;

 }

 publ i c st at i c voi d useAt hl et e(At hl et e a)
 {
 Syst em. out . pr i nt l n(" Usi ng At hl et e") ;
 Syst em. out . pr i nt l n(" Name: " + a. get Name()) ;
 a. pl ay() ;
 }

 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 MockPi ani st aMockPi ani st = new MockPi ani st () ;
 usePi ani st (aMockPi ani st) ;

 MockAt hl et e aMockAt hl et e = new MockAt hl et e() ;
 useAt hl et e(aMockAt hl et e) ;
 }
}

The At hl et e interface has a get Name() method and a pl ay() method. You may argue
that the method names should not be the same as in the Pi ani st interface. But, the
athlete and pianist may be pretty independent at this point in the evolution of your
system. Furthermore, what if the At hl et e interface is actually given to you from a third
party library you just decided to use. Then you can’ t argue that the methods in that
interface should not collide with any interface already in your system.

A Person Pianist
Let’s implement a class Person which implements the Pi ani st interface as shown below:

publ i c c l ass Per son i mpl ement s Pi ani st
{
 publ i c St r i ng get Name()
 {
 r et ur n " Joe" ;
 }

 publ i c voi d pl ay()
 {
 Syst em. out . pr i nt l n(" Joe pl ayi ng Pi ano") ;
 }
}

The code to exercise this class is shown here:

 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 MockPi ani st aMockPi ani st = new MockPi ani st () ;
 usePi ani st (aMockPi ani st) ;

 MockAt hl et e aMockAt hl et e = new MockAt hl et e() ;
 useAt hl et e(aMockAt hl et e) ;

 Per son aPer son = new Per son() ;
 usePi ani st (aPer son) ;

 }

We are creating an object of Per son and exercising its Pi ani st interface in this test. The
output from this program is shown below:

Usi ng Pi ani st
Name: Mock Pi ani st
Mock pl ayi ng pi ano
Usi ng At hl et e
Name: Mock At hl et e
Mock At hl et e pl ayi ng
Usi ng Pi ani st
Name: Joe
Joe pl ayi ng Pi ano

Colliding Interfaces
Now what if we want this person to be a pianist and an athlete? How can we ask the
person to sprint? If the Per son class implements the At hl et e interface, the get Name()
method is just fine as it returns the name of the person. However, what do you do about
the pl ay() method? You want the person to sprint if called using an At hl et e interface,
and play the piano if called using the Pi ani st interface. In Java, you can’ t have two
implementations of the pl ay() method with same signature in the Per son class–you’ ll
get a compilation error.

Java solution
No, don’ t throw in the towel. There is a solution in Java–inner classes can get us around.

Inner classes in Java are classes written within another class. These differ from the nested
class concept in C++ in that an inner class has full access to its host class, including
private members. There are four types of inner classes in Java: inner class, local inner
class, anonymous inner class and static inner class. Except for the static inner class, the
instances of all the other three types of inner classes have an implicit reference to an
instance of their host class. That is, every object of these inner classes (except static inner
class) is always attached to an instance of its host class. In this regard, I call these inner
classes as parasites. The figure below illustrates this:

Let’s see how we can use an inner class to get around the problem of colliding interfaces.
In the Per son class you first write a method pl ayAt hl et e() as shown below:

 publ i c voi d pl ayAt hl et e()
 {
 Syst em. out . pr i nt l n(" Joe spr i nt s") ;
 }

Then, you write an inner class called Per sonAsAt hl et e which uses the methods of
Per son class to implement the At hl et e interface as shown below:

publ i c c l ass Per son i mpl ement s Pi ani st
{

/ / … met hods get Name() , pl ay() and pl ayAt hl et e()
/ / ar e not shown her e.

 pr i vat e c l ass Per sonAsAt hl et e i mpl ement s At hl et e
 {
 publ i c St r i ng get Name()
 {
 r et ur n Per son. t hi s. get Name() ;
 }

 publ i c voi d pl ay()
 {
 Per son. t hi s. pl ayAt hl et e() ;
 }
 }
}

In the get Name() method of the Per sonAsAt hl et e inner class, we invoke the get Name()
method of the Per son class using this weird “Per son. ” notation. In Java, you generally
use a class name to access to a static member. In the case of inner classes, you use the
class name to gain access to the instance of the host class. Similarly, in the pl ay()
method of the Per sonAsAt hl et e inner class, you are using the pl ayAt hl et e() method
of the host class.

You have made the Per sonAsAt hl et e class private. So, how can any one use it? Let’s
provide a method in the Per son class to help with that as shown here:

publ i c c l ass Per son i mpl ement s Pi ani st
{
 …
 publ i c At hl et e get At hl et e()
 {
 r et ur n new Per sonAsAt hl et e() ;
 }
}

Now, let’s complete the test code to use this:

 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 MockPi ani st aMockPi ani st = new MockPi ani st () ;

 usePi ani st (aMockPi ani st) ;

 MockAt hl et e aMockAt hl et e = new MockAt hl et e() ;
 useAt hl et e(aMockAt hl et e) ;

 Per son aPer son = new Per son() ;
 usePi ani st (aPer son) ;
 useAt hl et e(aPer son. get At hl et e()) ;
 }

Running the program gives us the following output now:
Usi ng Pi ani st
Name: Mock Pi ani st
Mock pl ayi ng pi ano
Usi ng At hl et e
Name: Mock At hl et e
Mock At hl et e pl ayi ng
Usi ng Pi ani st
Name: Joe
Joe pl ayi ng Pi ano
Usi ng At hl et e
Name: Joe
Joe spr i nt s

Conclusion
If two or more interfaces have the same method signature, but different semantics, we
end up with colliding interfaces. This may not be avoidable when using third party
components or libraries. In Java, you may use inner classes to work around this problem.
In Part II we will see what alternate mechanism .NET provides to handle this problem.

References

1. Java Language Specification

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

